sábado, 30 de julio de 2016

ELEMENTOS BIESTABLES: FLIP-FLOPS R-S, M-S, J-K, T Y D, SÍNCRONOS Y ASÍNCRONOS


Biestables. 
Los biestables son el primer eslabón de componentes para la memorización de datos. A partir del elemento más simple.
Los circuitos con re alimentación no son combinacionales. Constituyen un nuevo tipo,  los 
llamados secuenciales. 
 La característica principal de un circuito secuencial es que su salida no sólo depende de 
su entrada, sino de sus entradas anteriores, que quedan recogidas en lo que llamaremos “estado”. 
 Supongamos el siguiente circuito elemental con realimentación.
Tipos de biestables y su utilización: 

 RS
 JK
 T
 D
 ASINCRONO
 uso comun
 interes teorico


 POR EL NIVEL
 interes teorico
 interes teorico
 uso comun

 POR FLANCO
 interes teorico
  uso comun
 uso comun
 interes teorico
 MAESTRO ESCLAVO
 uso comun
 uso comun
 uso comun
 interes teorico


Flips-Flops 

Un biestable, también llamado báscula (flip-flop en inglés), es un multivibrador capaz de permanecer en un estado determinado o en el contrario durante un tiempo indefinido. Esta característica es ampliamente utilizada en electrónica digital para memorizar información. El paso de un estado a otro se realiza variando sus entradas. Dependiendo del tipo de dichas entradas los biestables se dividen en:
Asíncronos: sólo tienen entradas de control. El más empleado es el biestable RS.
Síncronos: además de las entradas de control posee una entrada de sincronismo o de reloj. Si las entradas de control dependen de la de sincronismo se denominan síncronas y en caso contrario asíncronas. Por lo general, las entradas de control asíncronas prevalecen sobre las síncronas.


Aplicaciones 

Un biestable puede usarse para almacenar un bit. La información contenida en muchos biestables puede representar el estado de un secuenciador, el valor de un contador, un carácter ASCII en la memoria de un ordenador, o cualquier otra clase de información. 

Un uso corriente es el diseño de máquinas de estado finitas electrónicas. Los biestables almacenan el estado previo de la máquina que se usa para calcular el siguiente. 

El T es útil para contar. Una señal repetitiva en la entrada de reloj hace que el biestable cambie de estado por cada transición alto-bajo si su entrada T está a nivel 1. La salida de un biestable puede conectarse a la entrada de reloj de la siguiente y así sucesivamente. La salida final del conjunto considerado como una cadena de salidas de todos los biestables es el conteo en código binario del número de ciclos en la primera entrada de reloj hasta un máximo de 2n-1, donde n es el número de biestables usados. 

Una cadena de biestables T como la descrita anteriormente también sirve para la división de la frecuencia de entrada entre 2n, donde n es el número de biestables entre la entrada y la última salida.

Biestable RS

Dispositivo de almacenamiento temporal de 2 estados (alto y bajo), cuyas entradas principales permiten al ser activadas:
  • R: el borrado (reset en inglés), puesta a 0 ó nivel bajo de la salida.
  • S: el grabado (set en inglés), puesta a 1 ó nivel alto de la salida
Si no se activa ninguna de las entradas, el biestable permanece en el estado que poseía tras la última operación de borrado o grabado. En ningún caso deberían activarse ambas entradas a la vez, ya que esto provoca que las salidas directa (Q) y negada (Q') queden con el mismo valor: a bajo, si el flip-flop está construido con puertas NOR, o a alto, si está construido con puertas NAND. El problema de que ambas salidas queden al mismo estado está en que al desactivar ambas entradas no se podrá determinar el estado en el que quedaría la salida. Por eso, en las tablas de verdad, la activación de ambas entradas se contempla como caso no deseado (N. D.).

Biestable RS (Set Reset) asíncrono
Sólo posee las entradas R y S. Se compone internamente de dos puertas lógicas NAND o NOR, según se muestra en la siguiente figura:


Tabla de verdad biestable RS
R
S
Q (NOR)
Q' (NAND)
0
0
q
N. D.
0
1
1
0
1
0
0
1
1
1
N. D.
q
N. D.= Estado no deseado q= Estado de memoria


Biestable RS (Set Reset) síncrono

Circuito Biestable RS síncrono a) y esquema normalizado b).
Además de las entradas R y S, posee una entrada C de sincronismo cuya misión es la de permitir o no el cambio de estado del biestable. En la siguiente figura se muestra un ejemplo de un biestable síncrono a partir de una asíncrona, junto con su esquema normalizado:



Su tabla de verdad es la siguiente:
Tabla de verdad biestable RS
C
R
S
Q (NOR)
0
X
X
q
1
0
0
q
1
0
1
1
1
1
0
0
1
1
1
N. D.
X=no importa


Biestable D (Data o Delay)


Símbolos normalizados: Biestables D a) activo por nivel alto y b) activo por flanco de subida.
El flip-flop D resulta muy útil cuando se necesita almacenar un único bit de datos (1 o 0). Si se añade un inversor a un flip-flop S-R obtenemos un flip-flop D básico. El funcionamiento de un dispositivo activado por el flanco negativo es, por supuesto, idéntico, excepto que el disparo tiene lugar en el flanco de bajada del impulso del reloj. Recuerde que Q sigue a D en cada flanco del impulso de reloj.
Para ello, el dispositivo de almacenamiento temporal es de dos estados (alto y bajo), cuya salida adquiere el valor de la entrada D cuando se activa la entrada de sincronismo, C. En función del modo de activación de dicha entrada de sincronismo, existen dos tipos:
Activo por nivel (alto o bajo), también denominado registro o cerrojo (latch en inglés).
Activo por flanco (de subida o de bajada).
La ecuación característica del biestable D que describe su comportamiento es:
Qsiguiente=D


D
Q
Qsiguiente
0
X
0
1
X
1
X=no importa

Esta báscula puede verse como una primitiva línea de retardo o una retención de orden cero (zero order hold en inglés), ya que los datos que se introducen, se obtienen en la salida un ciclo de reloj después. Esta característica es aprovechada para sintetizar funciones de procesamiento digital de señales (DSP en inglés) mediante la transformada Z.

Biestable T (Toggle)

Símbolo normalizado: Biestable T activo por flanco de subida.
Dispositivo de almacenamiento temporal de 2 estados (alto y bajo). El biestable T cambia de estado ("toggle" en inglés) cada vez que la entrada de sincronismo o de reloj se dispara mientras la entrada T está a nivel alto. Si la entrada T está a nivel bajo, el biestable retiene el nivel previo. Puede obtenerse al unir las entradas de control de un biestable JK, unión que se corresponde a la entrada T.
La ecuación característica del biestable T que describe su comportamiento es:


T
Q
Qsiguiente
0
0
0
0
1
1
1
0
1
1
1
0


Biestable JK

Es versátil y es uno de los tipos de flip-flop mas usados. Su funcionamiento es idéntico al del flip-flop S-R en las condiciones SET, RESET y de permanencia de estado. La diferencia está en que el flip-flop J-K no tiene condiciones no validas como ocurre en el S-R.
Este dispositivo de almacenamiento es temporal que se encuentra dos estados (alto y bajo), cuyas entradas principales, J y K, a las que debe el nombre, permiten al ser activadas:
J: El grabado (set en inglés), puesta a 1 ó nivel alto de la salida.
K: El borrado (reset en inglés), puesta a 0 ó nivel bajo de la salida.
Si no se activa ninguna de las entradas, el biestable permanece en el estado que poseía tras la última operación de borrado o grabado. A diferencia del biestable RS, en el caso de activarse ambas entradas a la vez, la salida adquirirá el estado contrario al que tenía.

Y su tabla de verdad es:
J
K
Q
Qsiguiente
0
0
0
0
0
0
1
1
0
1
X
0
1
0
X
1
1
1
0
1
1
1
1
0
X=no importa

TIPOS DE BIESTABLES (RS JK D T)
BIESTABLES RS
Dispositivo de almacenamiento temporal de dos estados (alto y bajo), cuyas entradas principales, R y S, a las que debe el nombre, permiten al ser activadas:
R: el borrado (reset en inglés), puesta a 0 ó nivel bajo de la salida.
S: el grabado (set en inglés), puesta a 1 ó nivel alto de la salida
Si no se activa ninguna de las entradas, el biestable permanece en el estado que poseía tras la última operación de borrado o grabado. En ningún caso deberían activarse ambas entradas a la vez, ya que esto provoca que las salidas directa (Q) y negada (Q') queden con el mismo valor: a bajo, si la báscula está construida con
puertas NO-O (NOR), o a alto, si con puertas NO-Y (NAND). El problema de que ambas salidas queden al mismo estado está en que al desactivar ambas entradas no se podrá determinar el estado en el que quedaría la salida. Por eso, en las tablas de verdad, la activación de ambas entradas se contempla como caso no deseado (N. D.).
Su tabla de verdad es la siguiente (Q representa el estado actual de la salida y q el estado anterior a la última activación).

 Biestable JK
Dispositivo de almacenamiento temporal de dos estados (alto y bajo), cuyas entradas principales, J y K, a las que debe el nombre, permiten al ser activadas:
J: El grabado (set en inglés), puesta a 1 ó nivel alto de la salida.
K: El borrado (reset en inglés), puesta a 0 ó nivel bajo de la salida.
Si no se activa ninguna de las entradas, el biestable permanece en el estado que poseía tras la última operación de borrado o grabado. A diferencia del
biestable RS, en el caso de activarse ambas entradas a la vez, la salida adquirirá el estado contrario al que tenía.
El JK resuelve el caso de indeterminación R=S=1 del RS ( la ? de las tablas de verdad ) además de ofrecer más posibilidades. Una posible realización del JK sería la siguiente :
Figura 6. Biestable JK ( puede existir versión por flanco o por niveles )
La tabla de verdad o funcionamiento sería la siguiente :


La ecuación de funcionamiento de la tabla de verdad es


Biestable tipo D ( delay = retardo )

Símbolos normalizados: Biestables D a) activo por nivel alto y b) activo por flanco de subida.
Dispositivo de almacenamiento temporal de dos estados (alto y bajo), cuya salida adquiere el valor de la entrada D cuando se activa la entrada de sincronismo, C. En función del modo de activación de dicha entrada de sincronismo, existen dos tipos de biestables D:
Activo por nivel (alto o bajo), también denominado registro o cerrojo (latch en inglés) en español es "cerrojo".
Activo por flanco (de subida o de bajada).
Esta báscula puede verse como una primitiva
línea de retardo o una retención de orden cero (zero order hold en inglés), ya que los datos que se introducen, se obtienen en la salida un ciclo de reloj después. Esta característica es aprovechada para sintetizar funciones de procesamiento digital de señales (DSP en inglés) mediante la transformada en z.



Su tabla de funcionamiento o verdad es la siguiente :

Puedo obtener un biestable tipo D conectando un JK de la siguiente forma como se demostrará en clase:
Biestable tipo T ( trigger = disparo )
Símbolo normalizado: Biestable T activo por flanco de subida.
Dispositivo de almacenamiento temporal de dos estados (alto y bajo). El biestable T cambia de estado ("toggle" en inglés) que significa en español "BASCULANTE" ,cada vez que la entrada de sincronismo o de reloj se dispara. Si la entrada T está a nivel bajo, el biestable retiene el nivel previo. Puede obtenerse al unir las entradas de control de un biestable JK, unión que se corresponde a la entrada T.





0 comentarios:

Publicar un comentario

 
Blogger Templates